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Abstract—Plasticity in steel is characterized by an appreciable amount of plastic flow (in the yield
plateau range) which precedes strain hardening. This study is devoted to an analytical evaluation
of the effective plastic shear modulus of fully yielded steel plates at the instant of buckling. It is
assumed that yielding of steel is to follow the Tresca yield criterion and that plastic deformation of
a steel plate is to be caused by slips. The Tresca yield criterion provides lower bending stiffnesses
than that obtained from the von Mises yield criterion, but it does not lower the plastic shear modulus
of the material at any point on the yield plateau. A new theory is proposed here that assumes a
nonuniform distribution of slips depending on the orientation of an infinite number of possible slip
planes at each point in the plate. The twisting of the plate is then accompanied by distortion of its
sectional shape, and this mode of buckling is shown to provide a considerable reduction in the
effective plastic shear modulus. Applying these sectional stiffnesses and solving a differential equi-
librium equation leads to a lower bifurcation strength, which provides much better correlations
with experimental results than previous predictions.

1. INTRODUCTION

Analysis of plastic buckling of plates has a long historical background. The earliest such
analysis is based on deformation theory, which is even now considered to give good
correlation with experimental results. However these theories are not rational in the event
of nonproportional loading, such as that which occurs in plate buckling. After deformation
theory, incremental theory was proposed, which seemed to be rational, but was found to
provide unacceptably higher plastic buckling bifurcation stresses of plates than experimental
results. This is attributed to the assumption of a smooth yield surface, such as that associated
with the von Mises yield criterion. Recently, from the viewpoint that the yield surface may
have corners, plasticity rules have been reconsidered in order to justify the deformation
theory.

All of the above-mentioned theories, however, deal with metals with round-house type
stress—strain curves whenever yield flow does not occur. Since the plastic behavior of
materials is most pronounced in the material with yield flow, such theories should also be
able to explain test results for materials with an apparent yield flow such as mild steel.
Unfortunately, all of the theories trying to justify the deformation theory assume that the
yield surface maintains its original shape in the plastic flow range. Thus, the shear modulus
in the plastic flow range is equal to the elastic shear modulus. Therefore, these theories
cannot explain the plastic buckling of mild steel, and deformation theory is not applicable
to materials with a plastic flow.

In order to overcome these difficulties, a completely different approach is developed
here. It is based on the idea that the effective plastic shear modulus may be significantly
reduced from the elastic value. Cruciform-section columns under compression, which are
often used to study torsional buckling of plates, are employed in order to investigate the
buckling of mild steel, from which rationally lower bifurcation stresses will be obtained for
the plate element constituting the section.

Attention is focused on only one of the four plates in a cruciform-section column which
is subjected to uniaxial compression and is under the boundary condition that three of its
edges are simply supported, while another edge is free. The constituent material is mild
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steel which has a clear yield point and an appreciable amount of plastic flow before
subsequent strain hardening. In the yield plateau range, mild steel is strained under an
almost constant stress. From this fact, it is assumed that a constant yield stress holds and
therefore the longitudinal tangent modulus becomes zero in this range. The width-to-
thickness ratio of the plate is small enough that elastic buckling does not take place. The
bifurcation stress of the plate is then derived from solving a differential equation governing
equilibrium which includes explicitly the bending and torsional stiffnesses. Since, in the
yield plateau range, the sectional stiffnesses do not all vanish, it follows that a plate with a
sufficiently small width-to-thickness ratio can be compressed stably into the yield plateau
or even into the strain hardening range.

A number of studies have been devoted to the plastic buckling of plates. Using his
famous column model, Shanley (1947) first demonstrated that the bifurcation point of a
centrally compressed short column coincides theoretically with the tangent modulus load.
This is known as Shanley’s tangent modulus theory. Hill (1958) later generalized Shanley’s
concept and established a uniqueness criterion for the mathematical solution of elastic—
plastic solids. This concept is now universally accepted in succeeding research work.

As mentioned before, deformation theory and incremental theory predict different
values for the plastic bifurcation stress. In order to reduce the gap between the two
predictions, the following treatments incorporating imperfections have been proposed:
Onat and Drucker (1953) showed that the maximum load derived from incremental theory
is reduced to the bifurcation load derived from deformation theory by considering un-
avoidably small imperfections in a cruciform-section column composed of a material with
a bilinear stress-strain relation. Later, Hutchinson and Budiansky (1976) examined the
imperfection-sensitivity associated with the incremental theory in a more generalized setting,
again using a cruciform-section column. Their material had the mechanical properties
represented by the Ramberg—Osgood relation, and their study contains the research scope
of Onat and Drucker (1953) as a special case.

Some important proposals have attempted to reconcile the discrepancy between defor-
mation theory and incremental theory for strain-hardening materials without considering
imperfection. Batdorf and Budiansky (1949) proposed a slip theory of plasticity. Using this
theory Batdorf (1949) studied the plastic buckling of a long flange plate and found that the
plastic shear modulus is almost equivalent to that derived from the deformation theory.
Budiansky (1959) later theoretically proved that, under any loading close to proportional
loading, the slip theory is equivalent to the deformation theory.

Sewell (1973) solved for the bifurcation stress of a uniaxially compressed plate whose
periphery is simply supported. He studied the effect of coupled hardening between the yield
surface facets which meet at a vertex where the yield surface is locally similar to that of
Tresca. He obtained bifurcation stresses that are 10-30% lower than those based on the
von Mises yield criterion. This reduction is due to the reduction in the bending stiffnesses
and is not due to the reduction in the plastic shear modulus. In fact, no reduction in shear
modulus is obtained from his theory. Without a drastic reduction in the shear modulus, the
results of bifurcation analysts will not be consistent with those of experiment. Sewell (1974)
later proposed a general plastic flow theory for a multiple yield system in which the yield
surface is assumed to be a pyramidal vertex of the type introduced by Hill (1966). He found
that his theory generalizes and refines Budiansky’s study, and that therefore it too is almost
equivalent to the deformation theory for special loading conditions. Christoffersen and
Hutchinson (1979) proposed J, corner theory, which can be regarded as an extension of
Budiansky’s (1959) theory, to reassess the deformation theory. They concretely applied the
theory to the bifurcation and imperfection-sensitivity analysis of necking in a thin sheet.

Buckling analysis of plates using the deformation theory is continued by Ore and
Durban (1989). However, since they deal with a material whose mechanical properties are
defined by a Ramberg-Osgood relation without a yield flow, their research may be classified
into the group trying to justify the deformation theory.

The investigations into the plastic buckling of plates described above have considered
the possible stress versus strain relationships only based on the plasticity theory from rather
microscopic viewpoints. In contrast, the approach presented here focuses on stress versus
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strain relationships at the bifurcation point that are derived from a less restricted mode of
buckling deformation and from a more macroscopic viewpoint which may be described as
follows: Yielding is taken to follow the Tresca yield criterion. Plastic deformation of the
plate is caused by slips which develop only in the directions of maximum shear stress.
Assuming a nonuniform distribution of slips, the plate is capable of twist accompanied by
distortion of its cross-sectional shape. In the case of torsional buckling, this mode of
buckling provides a much lower sectional shear stiffness. In view of the particular plasticity
theory used here, the component of buckling shear strain is not different from that obtained
in the previous purely elastic studies. However, the effective plastic shear modulus is reduced
significantly below the elastic value, because the rate of exerted elastic shear strain is much
less.

The effective plastic shear modulus and bending stiffnesses are obtained individually
because two modes of torsion and bending are assumed to take place by superposition at
the instant of plate buckling. The derived shear modulus has an identical value both in the
yield plateau and in the strain hardening range. All the bending stiffnesses vanish in the
yield plateau range. One of them is again nonzero in the strain hardening range, but is small
enough to neglect its contribution to any increase in the buckling strength. The derived
bifurcation strengths provide much better correlations with experimental results than those
given by previous predictions.

2. STRAIN COMPONENTS IN A YIELDED PLATE

Strain components in a yielded plate in the plastic flow range under the condition of
uniaxial compression and plane stress are investigated in this chapter. Yielding is assumed
to follow the Tresca yield criterion and the plastic deformation is generated by planar
slipping in the direction of maximum shear stress. Under uniaxial compression, the plane
of maximum shear stress coincides with the plane making an angle of n/4 with the direction
of the axial stress. Therefore, any tangent plane to a cone with a vertical angle of n/2 can
be the slip plane as shown in Fig. 1.

Now, one of the possible slip planes is represented by the tangent plane to the cone at
line O’S which is involved in the plane making an angle of k& with the xy-plane in the fixed
coordinate system shown in Fig. 1. A local coordinate system is defined such that point S
is the origin, OS is the y’-axis, the tangent to the circle at point S is the z’-axis, and the line
parallel to the x-axis and passing through point Sis the x’-axis. This local coordinate system
can be established by rotating the fixed coordinate system by a counterclockwise angle &
about the x-axis. The x'y plane is normal to the slip plane, and the angle of inclination of
the y’z’-plane to the slip plane is #/4. The components of plastic strain are analysed in this
local coordinate system, when the axial stress is applied in the x direction. In Fig. 1, o,
represents the absolute yield stress and a minus sign is attached for compression.

The slip deformations in the tangent planes at O’S and O’S” lines involved in the x"y’-
plane defined in Fig. 1 are illustrated in Fig. 2. Both slip deformations are not necessarily
equal, but they are considered to be a pair corresponding to the principal strain in the same

Fig. L. Slip plane.
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Fig. 2. Slip model.

direction. Since the axes of x’, y’ and z’ are axes of principal strains, components of plastic
strain are given by

del = —4, del =4, def =0, N

where
de? = increment of plastic principal strain in the x” direction,

def. = increment of plastic principal strain in the y” direction,
de? = increment of plastic principal strain in the z’ direction,
A = positive scalar representing the increment of plastic strain related to the sum of

A and § in Fig. 2.

It is noted that increments of plastic shear strains denoted by dy% ., dy%.., and dy?,., are
equal to zero.

The strain components defined by eqns (1) can be transformed to those in the fixed
coordinate system. The component in the x direction is the same as that in the x” direction.
The components in the y and z directions are determined from the well-known trans-
formation rule. The transformation of principal strains into the coordinate system making
a clockwise angle of Q with the axis of maximum principal strain is represented by

_ate 6= T _tie g
gy = 3 + 5 cos 2Q), 5= 5 sin 2Q, 2)

where
&, = A, larger principal strain ()’ direction),

¢, = 0, smaller principal strain (z* direction),

&, = normal strain in the direction making a clockwise angle of Q with the direction
of the maximum principal strain,

y = shear strain after transformation.

Substituting ¢, = 4, ¢; = 0 and Q = k into the first equation in eqns (2), the increment
of plastic normal strain in the y direction is obtained. Substituting &, = 4, &, = 0 and
Q = k+m/2 into the first equation in eqns (2), the increment of plastic normal strain in the
z direction is obtained. Substituting &, = 4, ¢, = 0 and Q = k into the second equation in
eqns (2), the increment of plastic shear strain in the yz-plane is obtained. The shear strains
in the xy- and xz-planes all vanish. Therefore, the increments of plastic strains in the fixed
coordinate system are represented by
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de? = —4, deb = Acos’k, def = Asin’k,

dy?, =0, dyb, = —4Asin2k, dyf, =0 3)

Equations (3) give the increments of plastic strains in the fixed coordinate system when
slipping takes place in the planes defined by the angles of k and &k + =. In general, deformation
of a plate due to compression, tension, bending and torsion is generated by combined
slipping in various slip planes. For example, when a stable yield slip takes place due to the
axial force in the x direction as shown in Fig. 1, the increments of plastic strains in the
tangent planes defined by £ = 0 and &k = n are represented by def = —4, del = 1 and
de? = 0; and the increments of plastic strains in the tangent planes defined by & = n/2 and
k = 3/2x, represented by de? = —4, def =0 and de? = 4. These two families of slip are
generated simultaneously. The following resultant increments are then obtained, which
represent the incompressible and isotropic flow rule:

def = —20=—p, def=i=%, def=i= “@

IR

3. STRAINS AND DEFORMATION IN A PLATE IN TORSION

Strains and deformation in a plate subjected to uniaxial compression at the instant of
torsional buckling are investigated in this chapter on the condition that the full section is
yielded in the yield plateau range. It is assumed that, at the instant of torsional buckling,
the increments of plastic strains take place as described in the previous chapter. Axial strains
and shear strain are generated simultaneously without any strain reversal in this model,
which is similar to the Shanley model in that axial and flexural strains take place sim-
ultaneously at the instant of flexural buckling. Therefore, this model will give the minimum
buckling load.

Figure 3 shows a plate in torsion under axial yield force. According to eqns (3), the
increments of axial strains are accompanied by the increment of shear strain in the yz-plane
except for the planes of k = 0 and =/2. Because the plate is in torsion, the following three
conditions are assumed :

(1) At any point along the length, the rate of the torsional angle is constant.

(2) The increments of plastic normal strains def, de} and def are constant over the
length.

(3) The increment of plastic shear strain dy}, is simple shear strain.

The combination of assumptions (1) and (3) requires that the value of dy?, be proportional
to the x-coordinate. Figure 3 is based on these assumptions, and this mode shows a
progressive simple shear deformation accompanied by warp. Assumption (3), however, will
be shown to follow as a necessary condition in Chapter 7 by considering the boundary
conditions.

Assumptions (1) and (3) give

|
T
v

P> 0{-:— ——————————
L

(a}
Fig. 3. Torsional deformation.
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dyl. = —0,x = —x0,, <=x/l, (5)
where
8, = torsional angle per unit length,
[ = length,

f, = torsional angle at the end (x = /).
From eqns (3) and (5),
Asin 2k = x6,. (6)

Considering that the angle £ of the slip plane at the end coincides with the direction
in which the absolute value of dyf. becomes maximum, the maximum absolute value of
dy?. is obtained from eqns (3) to be — 4 when k = n/4. The angle k = n/4+ n also provides
the same maximum value related to the other perpendicular slip plane. Substituting & = /4
and X = 1 into eqn (6), we obtain

i=0, (7
From eqns (6) and (7), we obtain
k=4sin"'x (0<k<mn/4). (8)

It is noticed from eqns (3) that the same value for dyj. is generated at the angle
k' = n/2—k as at the angle k, and thus that the slip planes at k and k" can be combined.

The second condition characterizing this deformation is satisfied when the amounts of
slip in the planes defined by k and &k’ are equal. Therefore, from eqns (3), we obtain

de? = A[icos’ k+1cos’ k'] = %)t|:cosz k+cos’ (72_r ~k>] =14

From a similar calculation, we obtain
de? =14, def = — A

From these equations, it is noted that de?, del and de! are constant over the length.
For the case of pure compressive yielding, as investigated in Chapter 2, shear slip takes
place in the two slip planes (k = 0 and =) which are invariant over the length. For the
present torsional case, however, shear slips take place in the complex slip planes defined by
k and k" which vary along the length according to eqn (8).

4. SHEAR MODULUS

Torsional stiffness is investigated in this chapter on the basis of Saint-Venant’s principle
(1855) and Prandtl’s membrane analogy (1906). However, unlike the Saint-Venant theory
which assumes for elastic materials that no shear strain exists in the yz-plane and which
also assumes that the sectional shape remains the same after applying torsion, here we
assume that the yz-plane is subjected to a shear deformation under the plastic condition
according to the results obtained in the previous chapters.

When simple shear strain dy}. is generated as shown in Fig. 3(b), the displacements of
the small element are represented by

u= —9|Xy, 020’ ‘47:91(/7()’,2), (9)
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where

u = displacement in the z direction,
v = displacement in the y direction,

w = warping of cross-section in the x direction.

From eqns (9), we obtain

o%  ou o\
dyzx_ E-"Pa} - 91<E —y)

_ow ov_  0¢ L (10)
dyyx - 5 + ax - l’a;
ov Ou

= — —_— = — = P
d?yz oz + ay le dyyz J

Since dy,, and dy,, in eqns (10) have only elastic components, the following stress—
strain relations are applicable :
do
= 9 _ =
Tox G I( 62 Y >

0
'ryx = Gel —(e

oy

) (11)

where

G = (EJ2(1 +v)) = elastic shear modulus,
E = 2.059 x 10°Nmm~2? = Young’s modulus,

v = 0.3 = Poisson’s ratio,

T..» Ty = shear stresses in the zx and yx components, respectively (note that 7,, and
7, are increments).

Since the equilibrium condition of the small element is given by do,/0x = 0, we obtain

ot., 01,
= 0. 12
0z + dy 0 (12)

Equation (12) is satisfied by the stress function ¥( y, z) defined by

oy
T = —
zx ay
. 13)
oY
i

From eqns (11) and (13), we obtain
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(14)

The sum of the partial derivatives of the first and second equations of eqns (14) with
respect to y and x, respectively, results in

Rk JE 4
LY. G, 15
P ! (15)

From the shear stresses in eqns (13), we obtain the following torsional moment My
considering that W is zero at the boundary :

MT:2”‘PdA. (16)
A

Equation (15) is similar to the following Prandtl’s equation representing the equilibrium
equation of a weightless membrane with a closed boundary under air pressure:

?*c ok P
FERE T & a7

where
{ = displacement of the membrane ({ = 0 at the boundary),
p = pressure per unit area in the membrane,

T = uniform tension per unit length at the boundary of the membrane.

Comparing eqn (15) and eqn (17), it is noticed that p/T = G0, and that the stress function
¥ corresponds to the membrane displacement {. In addition, eqn (16) indicates that the
torsional moment M7 is equal to double the volume covered with the surface defined by V.

The right-hand side of eqn (15) does not contain the factor of 2 which appears in the
usual Saint-Venant torsion theory. This lack of the factor of 2, in conjunction with the
torsional moment result of eqn (16) and with the membrane analogy of eqn (17), will deliver
eqn (18) for a sufficiently slender section (z « ) with length b and width ¢:

MT = éG@Ist = %GJTQ], (18)

where J; = b1’ is the Saint-Venant torsion constant.

Since M = GJ+8, (Timoshenko and Goodier, 1970) for elastic problems, the equiv-
alent shear modulus G, for plastic problems is reduced to half of the elastic shear modulus.
Thus,

G, = 1G. (19)

In the case of a strain hardening problem, it can be assumed that the yield locus
maintains the geometric similarity and that the plastic deformation is generated by planar
slip in the plane and in the direction of maximum shear stress as in the case of the yield
plateau problem. Even in this case, the plane of maximum shear stress and the slip
deformation can be explained by Figs 1 and 2. The difference from the yield plateau problem
is that the increment of axial strain is accompanied by the increment of compressive axial
stress, again corresponding to Shanley’s idea. Thus, the results for the yield plateau problem
can be applied to the strain hardening problem and the shear modulus is given by eqn (19).
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Fig. 4. Cruciform-section column.

5. BENDING STRAINS AND MOMENTS CAUSED BY BUCKLING

Figure 4 shows a cruciform section column, from which a plate element is selected as
shown in Fig. 5. The plate has a free edge at y = b, and the other three edges are simply
supported. When the plate is fully yielded in the yield plateau range under uniaxial com-
pression, we investigate the increments of strains caused by double curvature pure bending
at the instant of buckling. The flexural deformation must satisfy the following tow con-
ditions: (1) Axial strains and flexural strains are generated without any strain reversal
simultaneously in the x and p directions according to tangent modulus theory, because a
lower bound for bifurcation load is sought; and (2) increments of shear strains are zero.

From condition (1), the center plane of the plate coincides with the neutral plane, and
increments of strains are due only to axial strains. Therefore, eqns (4) are applicable. On
the assumption that both the plane whose normal is originally in the x direction, and the
plane whose normal is originally in the y direction, individually remain planar under the
deformation, the strain increments at the instant of buckling are given by the following
vector expression :

deP =dgl, +2z¢p for - (20)

where

ey . . .
de? = ( dep> = incremental plastic strain vector,
y

def,\ . . : .
dep, = ( deP ) = incremental plastic strain vector at the center of plate thickness,
ym

¢ = (z") = curvature vector,
y

Fig. 5. One plate taken out from cruciform-section column.
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Fig. 6. Strain increment vectors at buckling.
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curvature in the x direction,

b,

curvature in the y direction,

t
|

= axis along the plate thickness with an origin at the center of plate thickness,

t = plate thickness.
From eqn (20), we obtain

de) —def, 0ef @,

oy TTvm = 21
de?—del, ~ ot -
where
del = def —de},, = plastic strain due to bending in the y direction,

6P = de? —del,, = plastic strain due to bending in the x direction.
< p

Figure 6 shows the incremental plastic strain vectors at point B at the instant of
buckling of a plate stressed in the yield plateau range. In this figure, def, is the incremental
plastic strain vector at the center of plate thickness, and T and 2 are the incremental plastic
strain vectors in the outer and inner fibers, respectively. The ends of these vectors lic on a
single line.

Figure 7 shows the Tresca yield criterion, in which point B indicates the yielding under
uniaxial compression. Assuming that buckling takes place at point B, incremental strain
vectors 1 and 7 defined in Fig. 6 are shown on the Tresca yield locus. When vectors 1 and
3 at any location in the plate are inside of the angle /. A BC, flexural deformation is generated
by the plastic strain increments without any strain reversal. Furthermore, the stress in the
plate section remains — gy, and the bending moments per unit width about the y- and x-
axes, represented by M, and M, respectively, are equal to zero. The necessary condition
for vectors T and 2 to be inside of the angle / ABC will be derived in Chapter 7, where it
is proved that there exists a deformation satisfying conditions (1) and (2).

- 6o
Ox B A
Go N2
Z
Go
46y

Fig. 7. Strain increment vectors and yield locus.
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For plate buckling in the strain hardening range, the strains consist of elastic com-
ponents as well as plastic ones. Now however M, is not zero, because the axial compression
is elevated due to strain hardening. The above discussion can be applied to the plastic
components of the strains and the plate buckling in the strain hardening range will be
treated in the Appendix.

6. PLASTIC BUCKLING OF STEEL PLATES IN A CRUCIFORM-SECTION COLUMN

In this chapter, we examine the buckling behavior in the yield plateau range of a single
plate extracted from a cruciform-section column under uniaxial compression shown in Fig.
5. The relations between bending moments and stiffnesses, and between torsional moment
and stiffness for an orthotropic plate are given by (Girkmann, 1956)

Mx = Dx1¢x+ny1¢y
M, = D,I$,+D, 19, ¢, 22)
M, =2G,Ip,,

where

M., = torsional moment per unit width of the plate,

D.1, D, DI D,I=bending stiffnesses,

¢., = twist of the surface with respect to the x- and y-axes.

In the previous chapter, it was shown that M, = M, =0,0or D, = D, = D,, = D, = 0,and
G, = 1G when buckling occurs in the yield plateau range.
The equilibrium equation for plate buckling is given by

M, M,y M, _ 0w

oxr  “oaxoy | oyt U ox®’ 23)
where
N = 0.t = bifurcation strength per unit width (positive for compression),
g = bifurcation stress,
w = out-of-plane displacement of the plate.
Substituting ¢,, = (0*w/0x dy) into the third equation of eqns (22), we obtain
0w w
Mxy = 2Gp1m = Glax 6y (24)
Substituting the relations of M, = M, = 0 and eqn (24) into eqn (23), we obtain
d*w N &*w
axay T a1 ox = 2
The out-of-plane displacement is assumed to be:
w = f()g(x). (26)

Substituting eqn (26) into eqn (25), we obtain
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N

GO D+ 55N =0,

(27)

where * and ’ indicate derivatives with respect to x and y, respectively. The boundary

conditions are represented by

gx)=0 atx=0,/
f(y)=0 aty=0,

oM, . .
o,+ ax" =0 at y = b from Kirchhoff condition for a free edge, 4
where
o, M, oM, _ oM,
T oy Ox ox

Py

(28)

Equation (27) is satisfied by the following two relations: §(x) =0 and f”"(y)+(N/
2GI) f(y) = 0. Considering the boundary conditions at x = 0 and /, the former relation
reduces to g(x) = 0, or w = 0, which is a trivial solution representing no buckling. The

general solution for the latter relation is given by

. | N | N
f(y) = A sin 2—Gly+Bcos 2—G1y

From the boundary condition at y = 0, we obtain

. | N
f(y) = Asin 2—G1y.
X N
w = 4 sin /-2—G—Iy g(x).

From the boundary condition at y = b, we obtain

Thus,

aMx_v anx -9 aMxy =0
Ox ox T oox

From eqns (24), (31) and (32), we obtain

/
(@) (b)

Fig. 8. Buckling mode.

(29)

(30)

(31

(32)
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/ N
Ccos Z—G—Iy'g(X) =0. (33)
| N n

Finally, the following bifurcation strength and stress are obtained :

Thus,

2

N= E%ZGI’ 35)
n* [tV
O = ﬂG(;) . (36)

The function g(x) is required only to satisfy the boundary conditions g(0) = g(/) = 0.

7. MODE OF BUCKLING WAVE AND ASSOCIATED STRAIN AND DEFORMATION

The general solutions for the mode of buckling wave in the direction of plate width
are represented by eqns (29) and (A10) for bucklings in the plastic flow range and in the
strain hardening range, respectively. They must satisfy the boundary conditions given by
eqns (28) which are valid both for a simply-supported edge and a fixed edge at y = 0.
Therefore, these different support conditions have the same bifurcation stress and the same
mode of buckling wave (sine wave in the direction of plate width). As described in Chapter
3, shear deformation can take place at the instant of torsional buckling. Thus, the mode of
buckling wave in the direction of plate width satisfying the above-mentioned boundary
conditions must be accompanied by the shear deformation as shown in Fig. 8. Figure 8(a)
shows the original shape and Fig. 8(b) shows the buckling mode. In these figures, the plate
section is divided into sub-sections. The inner boundary lines between sub-sections in the
buckling mode are parallel to the original inner boundary lines. This reflects that plastic
shear angle dy}, resulting from simple shear strain. Therefore, the previously assumed
condition (3) of Chapter 3 is in fact a necessary condition. The increment of plastic shear
strain along the plate width is maximum at the supported edge and is zero at the free edge.
With respect to bending, curvature ¢, in the y direction for the mode shown in Fig. 8 is
zero at any point in the plate. On the basis that buckling takes place with a combined mode
of torsion and bending, the strain and deformation for individual modes are investigated
in the following sections.

7.1. Strain and deformation for torsional mode

As indicated in Fig. 8, the increment of plastic shear strain dy}, is maximum at the
center (//2, 0) of the supported edge. Considering that the angle of the slip plane at this
point is formed such that the absolute value of dy}, is maximum, the maximum absolute
value is obtained as dy}, = — A when k = n/4 from eqn (3). The out-of-plane displacement
w is given by eqn (31), but g(x) involved in this equation is indeterminate in the yield flow
range. In the strain hardening range, however, g(x) is given by eqn (A7), and thus the mode
of buckling in the yield flow range satisfying the equilibrium equation is assumed as follows
for the time being from modifying eqn (A12):

. W . T
w = Q sin 257 S 37

Deriving eqn (37), \/ﬁ is calculated from eqn (A14), and m is unity in order to minimize
the bifurcation strength. From Fig. 8 and eqn (37), dy}, is given by
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dw = 7 n
P e Sy esin— x. 3
dy?. ay szcos 2by sin l,x (38)
Since dyf. = — 4 at point ({/2, 0), we obtain
7
= gy 3
~ 2b (39)
From eqns (3) and (39), we have the relation
. o
—Asin 2k = % Q sin 2k. (40)
Equations (3), (38} and (40) give
. 4 .
sin 2k = ¢cos Zb—y sin -z-x. {41)
Therefore, we find the following expression :
sin- (08 pesin® )
k = 3sin (cos % yesin lx . 42)

It is noticed from eqn (3) that the same amount of dy}, is generated for &’ = n/2—k and
that the complex slip planes defined by k and &’ are possible.

7.2. Strain and deformation for bending mode

The curvature in the y direction denoted by ¢, is zero when the buckling mode shown
in Fig. 8(b) takes place. Considering that the increment of plastic shear strain is generated
only in the yz-plane, the curvature in the x direction denoted by ¢, is represented by the
following equation upon using w as given by eqn (37) :

7w ¥ . % . ®m
(}5',‘. = — 5—):—2 = Q(”i) sin %}7 sin ?x. (43)
The value of ¢, takes the following maximum at point (//2, b) :

Do = (-’;) ) (44)

In Fig. 6, which shows the general expression of ¢, # 0, vectors 1(//2, b, —1/2) and 3(//2,
b, t/2) are found to make a maximum angle in the plate. Since ¢,/¢, = 0 at any point in
the plate, ends of the incremental plastic strain vectors lie on a single line.

Next, we investigate the condition that vectors 1(//2, b, —#/2) and 2(//2, b, ¢/2) remain
in the angle 7 ABC in Fig. 7. Since the incremental strain vector dsf, at the center of plate



Analysis of plastic buckling of steel plates 849

=
d A
B/ : .
| s
7\ dER ~ 2
f 19
| A
' 2
le——— _J
C

Fig. 9. Strain increment vectors at limit state.

thickness shown in Fig. 9 consists only of axial strains, its components are represented by
(—u, pu/2) as shown by eqn (4). Since the triangle ABde is an equilateral right-angled
triangle, ge = u/2 and fg = u/2. Considering that the maximum value of the flexural strain
component in the x direction of vector 2 is t/2¢, max, the limit condition that vector 2 lies
just on line BC is given by

! U

— O < -
) ¢.\:,de 2 (453)

The condition that vector 1 does not lie out of line BA is automatically satisfied by eqn
(45). Thus, eqn (45) can be rewritten as follows when only the sign of equality is taken into
account :

(?)2@ - 1. (45b)

Equation (45b) represents the limit condition that the axial strain and the flexural strain
are simultaneously developed both in the x and y directions at the instant of buckling
without any strain reversal.

Next, we investigate the possible combinations of slip components resulting from
flexural deformation in the plate under the limit state of no strain reversal represented by
conditions (1) and (2) in Chapter 5. Substituting eqns (4), which represent the axial strain
increments at the center of plate thickness, and eqn (45b) into eqn (20), we obtain

2
def = — (§> 0r+:0,,

, 1= 2
def =5 <7> or. (46)

From eqns (3) and (46), the increment of plastic strain in the x direction is given by

d=—de? = <§>2Qt—z¢x. (47

In order to satisfy the condition that the increment of shear strain must be zero, we
obtain k = 0 or n/2 according to eqn (3). Assuming that the increment of plastic strain
given by eqn (47) is represented by &4 in the slip plane of £ = 0 and by (1—¢)4 in the slip
plane of k = n/2, the increment of plastic strain in the y direction is given by
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my:czm§0+a~fucmlg=§A (48)

From de! in eqn (46) and 4 in eqn (47), € is represented by

F=S e (49)

At point (J/2, b), substituting eqn (44) into eqn (49), we obtain

t

5=2u—@'

(50

Thus, the following slip ratios in the direction of plate thickness are obtained :

éo-_—

for z =0,

N —

t
g2 =1 f =35
é/z or z 3

p=} forz=—7

The slip ratio at an arbitrary point in the plate can be obtained from eqn (49)
corresponding to its coordinates (x, y, z). From the above discussion it follows that the
flexural deformation satisfying conditions (1) and (2) in Chapter S can be developed at the
instant of plate buckling. It should be noted that the stress at any point in the plate remains
at the yield stress and that bending moments M, and M, are not generated.

8. COMPARISON WITH EXPERIMENTAL RESULTS

The elastic bifurcation stress of a plate in which three edges are simply supported and
one edge is free is given by the following equation when the plate is sufficiently long (Bleich,

1952)
’E tY

The bifurcation stress given by egn (51) is equal to the following bifurcation stress in pure
torsion when v = 0.3:

6cr| (NJ/mm2) \

\

' Strain hardening region
300F '

authors’
torsion
6ol --235 y
%J}Qgggt paper
2001
Elastic /

11".7612-'97 1835

100 PR B A
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Fig. 10. Buckling curve for stress.
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Table 1. Mechanical property of steel from tension test

Oy Gmax &y £t Emax E,
Material (Nmm~%) (Nmm™% (%) (%) {%) (Nmm~3%)

S$S400 265 403 0.129 2.09 17.4 3668

! 2
o = G(-b-) . (52)

The bifurcation stress of a plate in torsion in the plastic range is represented by the
following equation, because shear modulus G, defined by eqn (19) is only the mechanical
property related to the bifurcation stress in this case:

O = %G(—{)z {53)
cr b

Most of the previous research concluded that the shear modulus in the plastic flow
range is equal to that in the elastic range, and that eqn (52) is valid even in the plastic flow
range. The bifurcation stress in the plastic flow range given by egn (36) obtained in this
study is lower than the bifurcation stress given by eqn (53) for torsion.

The solid line in Fig. 10 shows the buckling curve calculated from eqn (36) for a mild
steel designated by JIS-SS400 (yield stress o, = 235 N mm~2). In this figure, the curves
calculated from the elastic solution eqn (52) and torsion solution eqn (53) are also illustrated
as references. In Fig. 10, the intersection of the curve defined by eqn (36) and the line
defined by o, = 0, is the only meaningful point in the plastic flow range. For the strain
hardening range, eqn (A7) is applicable, which has a minimum value coincident with eqn
(36) at I/b = oo, which is also illustrated in Fig. 10.

In order to verify the accuracy of analysis, the following experiment was carried out.
The specimens were made of mild steel plates, and the plates were assembled by welding
into a cruciform section. After welding, the specimens were annealed. The plate thickness
was 9 mm, the width-to-thickness ratio b/t was ranged from 5 to 15, where b indicates half
of the entire width of the cruciform section, and the length / = 3. The material properties
obtained from a tensile test are shown in Fig. 11 and Table 1. In this table, the following
symbols are used :

oy = yield stress,
Omax = Maximum stress,
gy = yield strain (oy/E)

&, = strain at the onset of strain hardening,

G {(Nfmm?)
4001
e
200t i
e S AL\
0O 1 2 3 4

Fig. 11. Stress-strain curve.

SAS 30:6-H
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Fig. 12. Test set-up.

Emax = Strain at maximum stress,
E = Young'smodulus,

E,, = strain hardening modulus.

The average yield stress obtained from the compression test, denoted by .y, was 272
N mm~?, which was about 3% higher than that from the tensile test. Thus, the average
yield strain in compression, denoted by &, was calculated from the following equation:

by = Gy /E. (54)

Then, by using & obtained from eqn (54), the equivalent width-to-thickness ratio b/t
&y was estimated.

The load was applied in a screw-type universal testing machine with a loading capacity
of 2000 kN. The specimen was placed between bearing plates A4 and B as shown in Fig. 12.
The bottom bearing plate 4 was set on a sufficiently stiff supporting device. The specimen
was centrally loaded, and rotation was prevented.

The analytical bifurcation stress given by eqn (36) does not include the effect of length,
because the plate is in the plastic flow range. The bifurcation stress in the strain hardening
range given by eqn (A17) includes the effect of length. However, the difference between
them is small, e.g. at most 1.4% when //b = 3 and E/E,, = 40. Therefore, the buckling curve
obtained from eqn (36) is compared with the test results.

Dividing both sides of eqn (36) by o,, we obtain a new buckling curve which is not
dependent on the yield stress. Thus,

Oor nt 1

a;=48(1+v)'<b N
¢ ch

(55)

Assuming that the buckling stress obtained from the test is equal to g,,,,, and substituting
Omax INLO G, In eqn (55), we obtain

O max n? 1

= (56)

o MBA+v) [p .V
" ()

Figure 13 shows the analytical results from eqn (56) and the experimental results,
where .6y was used instead of a,. Equation (56) gives the stress increase rate. The solutions
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Fig. 13. Comparison of theoretical results with test results.

derived from deformation theory by Stowell (1948) on the basis of Fig. 11 and Table 1 are
also shown in Fig. 13. In Fig. 13, the ordinate is the stress increase rate, and the abscissa
is the equivalent width-to-thickness ratio. This figure demonstrates that the analysis and
the experiment have exceptional agreement with respect to the upper limit of the width-to-
thickness ratio range in which axial stress can be increased over the yield stress into the
strain hardening range. With the decrease in the effective width-to-thickness ratio in the
strain hardening range, the stress increase rate becomes larger, but the experimental data
points are below the analytical predictions. The reason for this discrepancy is not apparent,
but may be due to the loss of geometric similarity of the yield locus in the strain hardening
range, which is the basic assumption in this analysis. When the geometric similarity is
impaired, slip deformations in different directions can be combined. However, it can be
concluded that the proposed analytical method provides a good agreement with the exper-
imental results in the early plastic zone. This agreement results from the significant reduction
in the shear modulus derived in this study.

9. SUMMARY AND CONCLUSIONS

(1) On the basis of the Tresca yield criterion and assuming that the plastic deformation
is generated by planar slip in the direction of the maximum shear stress, the slip deformation
in an arbitrary slip plane was represented by strains in the fixed coordinate system.

(2) When plastic buckling takes place in a single plate extracted from a cruciform-
section column, a complex buckling mode composed of torsional and flexural deflections
is generated, allowing us to determine an equivalent shear modulus and flexural stiffnesses
in the plastic flow range. These properties were derived from the idea that plastic buckling
can be developed under the combination slip obtained from (1) when there is no strain
reversal.

(3) The shear modulus in the plastic flow range, and even in the strain hardening range,
is equal to half of the elastic shear modulus, i.e. 1/2G.

(4) All of the flexural stiffnesses are equal to zero in the plastic flow range, but in the
strain hardening range it follows that D.J = E I while the other stiffnesses remain zero.

(5) For buckling in the plastic flow range, the buckling wave mode in the longitudinal
direction must satisfy the condition that the displacement at the boundary is equal to zero,
but is otherwise arbitrary. For buckling in the strain hardening range, the buckling mode
in the longitudinal direction is sinusoidal. The buckling mode in the transverse direction is
sinusoidal both for the plastic flow and for the strain hardening ranges.
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(6) Since the boundary condition at the instant of buckling is common to the simply
supported edge and the fixed edge at y = 0, the bifurcation stress and the buckling wave
mode are also common to the different support conditions.

(7) At the instant of buckling, the increment of plastic shear strain is generated in the
transverse section, and its value 1s maximum at the support and is zero at the free edge.

(8) Analytical solutions for the plastic buckling were compared with experimental
results, and a good agreement in the early plastic zone was obtained.

REFERENCES

Batdorf, S. B. (1949). Theories of plastic buckling. J. Aero. Sci. July, 405-408.

Batdorf, S. B. and Budiansky, B. (1949). A mathematical theory of plasticity based on the concept of slip. NACA
Tech. Note No. 1871.

Bleich, F. (1952). Buckling Strength of Metal Structures. McGraw-Hill, New York.

Budiansky, B. (1959). A reassessment of deformation theories of plasticity. Trans. ASME 81, Series E, J. Appl.
Mech. 26, 259-264.

Christoffersen, J. and Hutchinson, J. W. (1979). A class of phenomenological corner theories of plasticity. J.
Mech. Phys. Solids 27, 465-487.

Girkmann, K. (1956). Flachentragwerke. Springer, Berlin.

Hill, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236
240.

Hill, R. (1966). Generalized constitutive relation for incremental deformation of metal crystals by multislip. J.
Mech. Phys. Solids 14, 95-102.

Hutchinson, J. W. and Budiansky, B. (1976). Analytical and numerical study of the effects of initial imperfections
on the inelastic buckling of a cruciform column. Buckling of structures. Symposium, Cambridge/USA. 17-21
June, 1974, pp. 98-105. Springer, Berlin.

Inoue, T., Orihara, S. and Kuwamura, H. (1989). Stress—strain relations of cruciform section stub-columns. J.
Struct. Engng 35B, 323-336 (in Japanese).

Onat, E. T. and Drucker, D. C. (1953). Inelastic instability and incremental theories of plasticity. J. Aero. Sci.
20, 181-186.

Ore, E. and Durban, D. (1989). Elastoplastic buckling of annular plates in pure shear. J. Appl. Mech. 56, 644
651.

Prandtl (1903). Zur Torsion von prismatischen Stiben. Physik. Z. 4(26b), 758-759.

Saint-Venant (1855). de Barre, Mem. acad. Sci. Savants etrangers, XIV, 233-560.

Sewell, M. J. (1973). A yield-surface corner lowers the buckling stress of an elastic—plastic plate under compression.
J. Mech. Phys. Solids 21, 19-45.

Sewell, M. J. (1974). A plastic flow rule at a yield vertex. J. Mech. Phys. Solids 22, 469—-490.

Shanley, F. R. (1947). Inelastic column theory. J. Aero. Sci. 14(5), 261-267.

Stowell, E. Z. (1948). A unified theory of plastic buckling of columns and plates. NACA Technical Note, No.
1556.

Timoshenko, S. P. and Goodier, J. N. (1970). Theory of Elasticity. McGraw-Hill, New York.

APPENDIX: BUCKLING IN THE STRAIN HARDENING RANGE

The shear modulus in the strain hardening range is given by eqn (19) as discussed in Chapter 4. In this
appendix, the flexural stiffnesses are investigated.

It is assumed that the Tresca yield locus is proportionally expanded in the strain hardening range, and that
the plastic deformation is attributed to the slip deformation in the plane and in the direction of maximum shear
stress in the same manner as used for the plastic flow range. The plastic components in the increments of normal
strains for the strain hardening range follow the same rule discussed for the plastic flow range. The relationships
between increments of strain and stress are related to the increments of shear strain caused by slip and shear
stress. In the case of pure flexural deformation, the direction of the slip must be represented by k = 0 and n/2 as
described in the case of the plastic flow range. The increments of shear strains caused by slips can be transformed
into the fixed coordinate system in a one—one relation, and eqn (3) can be applied both to the cases of £ = 0 and
n/2.

The increment of shear stress related to the slip in the direction of & = 0 results in the stress increments of
compression in the x direction and tension in the y direction, but the quantitative relation between them is now
indeterminate. In an exact sense, the relation must be determined such that the bifurcation load is minimum. This
discussion, however, assumes that only the increment of compressive stress in the x direction is generated. The
increment of shear stress related to the slip in the direction of k = n/2 results in the stress increment in the x
direction, because the stress in the z direction is zero.

When the slip results only in the stress increment in the x direction, the slip is considered to be the same kind
of slip observed in coupon test of material in tension. Thus, the relations between the increments of stress and
strain in the x direction, and the stress increments in the y direction, both for the cases of K = 0 and #/2, are given
by the following equations representing the tensile behavior of the material :

(AD)

do, = E, de,
do, =0 i
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where
do, = increment of normal stress in the x direction,
do, = increment of normal stress in the y direction,
de, = increment of normal strain in the x direction,

E,, = tangent modulus on stress-strain curve of material in the strain hardening range.
The bending moments with respect to the y and x axes are given by

42

M, = do.zdz
o (A2)
M, = ’ do,zdz
—42
Substituting eqn (Al) into eqn (A2), we obtain
MX = ES 1¢X
Mo—0 } (A3)
Comparing eqn (A3) with eqn (22), we obtain the following flexural stiffnesses :
DI=E,
DI=D =D, I=0{ (Ad)
From eqn (A4) and eqn (22) with the relation ¢, = — (0*w/0x?), the bending moments and torsional moment
are represented by
w
Mx = _Es(lg__x‘f
M,=0 . (AS5)
ow
Mr_v = GI ax 6}1
Substituting eqns (AS) into eqn (23) representing the equilibrium at the instant of buckling, we obtain
Ey1g (x) f(»)+2GIG(x) " (¥} + Ng(x) f(y) = 0. (A6)

When the plate ends x = 0, / are simply supported, adding the condition g(x) =0 at x = 0, / to the boundary
conditions given by eqn (28) and solving eqn (A6) by the method of separation of variables, we obtain

g(x) = Asin Tlf x. (A7)

Then,
. 1 m?n? B
O Tm(”‘ ,—;&J)f(y) =0 (A8)

Equation (A8) is rewritten as
SO+ Hf(y) =0,

1 m®n?
H= 2—61<N— I—ZES,I). (A9)

The general solution of eqn (A9) when H # 0 is given by

f(») = Bsin \/Hy+C cos ./Hy. (A10)
The boundary conditions are given by eqn (28). Thus, from the condition at y = 0
f(») = Bsin \/Hy. (AL

Thus, the buckling mode is represented by

mn
— X.

w = ABsin \/Hy+sin ]

(A12)
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From the boundary condition at y = A, we obtain

\,/}‘j cos V/;ﬁy -sin ";75 x =0, (AL}

Thus, we obtain

JHb =3, (Al4)
NeZ " AlS)
= g Uit T Bl (

N defined by eqn (A13) is minimum at m = 1. Thus, we obtain the following bifurcation strength and stress:
n 2 n 2
N= 277301+ FE"I' (Al6)

H: t 2 7{2 f 2
O = ﬁG(z) * ‘i'z‘ES‘<i>
G b/ 1tV
s

Assuming H = 0 in eqn (A9), we obtain f( y) = Dy which represents a linear mode in the direction of plate
width, but considering the boundary condition at p = b, it is noticed that this solution results in f(y) = 0, that
is, a trivial deformation of no buckling.

Comparing eqn (A17) with eqn (36) which was derived for the plastic flow range, eqn (A17) gives a higher
critical stress by the difference of the second term including E, in the right-hand side of eqn (A17). However, the
difference is at most 1.4% when //b = 3 and E/E, = 40.

If the distribution of the stress increment in the x and y directions does not follow the assumption that
de, = 0, we may obtain a smaller bifurcation stress. However, since the analysis based on this assumption provides
a satisfactory agreement with the bifurcation stress in the plastic flow range, further detailed study will not be
necessary.

|3,

[



